|
1
|
|
|
|
Squiggly Line fit to the training data
|
|
|
36 Hörer
|
|
2
|
|
|
|
Definition of Variance
|
|
|
32 Hörer
|
|
3
|
|
|
|
Definition of Overfit
|
|
|
31 Hörer
|
|
4
|
|
|
|
Cross Validation concepts
|
|
|
31 Hörer
|
|
5
|
|
|
|
Motivation for using Cross Validation
|
|
|
30 Hörer
|
|
6
|
|
|
|
An example using Cross Validation
|
|
|
27 Hörer
|
|
7
|
|
|
|
Bias and Variance
|
|
|
21 Hörer
|
|
8
|
|
|
|
Least Regression fit to the training data
|
|
|
18 Hörer
|
|
9
|
|
|
|
Motivation for confusion matrices
|
|
|
16 Hörer
|
|
10
|
|
|
|
A 3x3 confusion matrix.
|
|
|
13 Hörer
|
|
11
|
|
|
|
Cross Validation for tuning parameters
|
|
|
11 Hörer
|
|
12
|
|
|
|
Definition of confusion matrix and related terminology
|
|
|
9 Hörer
|
|
13
|
|
|
|
Confusion matrix example
|
|
|
8 Hörer
|
|
14
|
|
|
|
Comparing confusion matrices
|
|
|
7 Hörer
|
|
15
|
|
|
|
The data and the "true" model
|
|
|
7 Hörer
|
|
16
|
|
|
|
Sensitivity and Specificity
|
|
|
5 Hörer
|
|
17
|
|
|
|
Intro
|
|
|
5 Hörer
|
|
18
|
|
|
|
Cross Validation
|
|
|
2 Hörer
|
|
19
|
|
|
|
Summary
|
|
|
2 Hörer
|
|
20
|
|
|
|
Awesome song and introduction
|
|
|
1 Hörer
|
|
21
|
|
|
|
The Confusion Matrix
|
|
|
1 Hörer
|